GROUNDWATER FLOW, PERMEABILITY, AND PRESSURE

Lesson 4

LESSON 4 – GROUNDWATER FLOW, PERMEABILITY, and PRESSURE

Learning Outcomes -

- Discuss effects of groundwater on rock slope stability;
- Define groundwater flow in rock masses permeability and head (pressure) distribution;
- List factors influencing measurement of water pressure with piezometers.

Effect of Groundwater on Slope Stability

- Reduces shear strength of sliding surface
- Induces thrust forces in tension cracks
- Changes in moisture content accelerate weathering
- Freezing induces wedging in open fissures
- Erosion of surface soils and weak infillings

Factor of Safety Calculation

$$F = \frac{cA + (W\cos\psi_P - U - V\sin\psi_p)\tan\phi}{W\sin\psi_p + V\cos\psi_p}$$

5-2

Effect of Ground Water on Stability

- Water Force V Acts in Tension Crack
 - Adds to Driving Force

$$V = \frac{1}{2} \gamma_{w} \cdot z_{w}^{2}$$
 (5-5)

- Water Force U Acts on Sliding Surface
 - Decreases Normal Force

$$U = \frac{1}{2} \gamma_{w} \cdot z_{w} (H + b \tan \psi_{s} - z) \cdot \csc \psi_{p}$$
 (5-4)

Hydrologic Cycle

Hydrologic Cycle - Climate Effects

Groundwater Discharge and Recharge Zones

Effect of Permeability on Water Table

Flow Systems in Rock

b)

Definition of Permeability - Darcy's Law

Darcy's Law - Calculation of Permeability, Head, and Flow

$$k = \frac{Q1}{A(h_1 - h_2)}$$

K = permeability (m/s)

Q = flow quantity per unit time (m³/s)

L = path length (m)

A = path cross-section area (m²)

 $(h_1 - h_2) = head difference (m)$

Range of Permeability for Rock and Soil

- Intact rock shale, dolomite, granite:
 - 10⁻⁷ to 10⁻¹⁰ cm/s
- Fractured rock, clay-filled joints:
 - 10⁻³ to 10⁻⁶ cm/s
- Jointed rock, clean sand:
 - 10⁻¹ to 10⁻² cm/s
- Open jointed rock, karstic rock:
 - 10 cm/s
- Heavily jointed, blasted rock, clean gravel:
 - 10¹ to 10² cm/s

Range of Permeability for Rock and Soil

 $10^{8}\ 10^{7}\ 10^{8}\ 10^{5}\ 10^{4}\ 10^{3}\ 10^{2}\ 10^{1}\ 1\ 10\ 10^{2}\ 10^{3}\ 10^{4}\ 10^{5}$

K(m/d)

Permeability of Intact and Jointed Rock

- Permeability of intact rock (primary permeability) very low
- Permeability of jointed rock mass (secondary permeability) depends on joint spacing and aperture

Permeability of Joint Systems

Permeability,
$$k = f\left(\frac{\text{(aperture)}^3}{\text{(spacing)}}\right)$$

e.g. Aperture = 1 mm, spacing = 1 m, $k = 8.1 \times 10^{-4} \text{ m/s}$

> Aperture = 0.2 mm, spacing = 1 m, $k = 6.5 \times 10^{-6} \text{ m/s}$

Flow Nets - Equipotential and Flow Lines

Effect of Anistropic Permeability on Pressure Distribution

Isotropic

Horizontally Bedded

Inclined Bedding

Measurement of Water Pressure

- 132041A Geotechnical Instrumentation
- 132031A Subsurface Investigations

Stand Pipe

CMT

Data packs

Figure 29 Piezometeric Data for Jenkins' Knob Vicinity

Factors Influencing Installation of Piezometers in Rock

- Orient hole to intersect discontinuities
- Position completion zone in jointed rock
- Effect of faults high and low permeability zones
- Effect of rock types (e.g. sandstone and shale) with differing permeabilities
- Hydraulic time lag standpipe, pneumatic piezometers
- Cost and reliability, access for readings

Field Measurement of Permeability

Must disturb the groundwater regime by adding or removing water from the system and measuring the rate of recovery

Field Measurement of Permeability

Variable head tests - e.g. falling head test in standpipe piezometer (Table 4-3, Page 4-13)

Constant head tests – e.g. packer test (Fig 4-9, Page 4-12)

Pump tests - pumped well and observation well(s)

Ground Water Control

- Passive Methods
 Horizontal drains
 Adits/Galleries
- Active Methods
 Pumped wells
 Pumped shafts
- Combinations

Passive Horizontal Drains

Groundwater Control

Summary of options

LESSON 4 – GROUNDWATER FLOW, PERMEABILITY, and PRESSURE

Learning Outcomes -

- Discuss effects of groundwater on rock slope stability;
- Define groundwater flow in rock masses permeability and head (pressure) distribution;
- List factors influencing measurement of water pressure with piezometers.